skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liang, Yanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Abstract Besides freshwater ecosystems such as lakes and rivers, estuaries and coastal regions are crucial to the global distribution of per‐ and polyfluoroalkyl substances (PFAS) through the ocean and their impacts and transport throughout the food web. This review includes a comprehensive assessment of the concentration and distribution of legacy and emerging PFAS compounds in living species, such as plants and aquatic creatures, as well as in abiotic components, such as surface water and sediment within estuarine ecosystems. This paper also explores the temporal and seasonal patterns of PFAS emissions, as well as the fate of both long‐ and short‐chain PFAS compounds. Furthermore, it discusses the partitioning behavior, bioaccumulation, and trophic magnification of PFAS in estuarine environments. PFAS are widespread in estuary sediment and surface water, and sediments continue to serve as a significant reservoir for these substances. The temporal trend suggests that the introduction of legislation and the gradual phaseout of some PFAS groups may have led to a decrease in their concentration levels. Elevated levels of PFAS in estuary aquatic animals and their ability to bioaccumulate and biomagnify in aquatic food webs could lead to long‐term negative health effects on the surrounding population and ecosystem. 
    more » « less